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Rimming flow of liquid in a rotating horizontal cylinder 
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(Received 27 June 1974 and in revised form 6 November 1975) 

Steady two-dimensional flow of Newtonian liquid in a layer around the inside of 
a rotating horizontal cylinder is analysed as a regular perturbation from rigid- 
body motion. The equations governing the first perturbation are solved in closed 
form. Parameter limits are taken in order to elucidate the flow structure and to 
provide simpler working formulae. The limiting cases are for small Reynolds 
numbers, which resembles viscous film flow down a curved wall; for large Rey- 
nolds numbers, which involves a periodic boundary layer; and for small ratios of 
average film thickness to cylinder radius. In  every case the maximum film thick- 
ness occurs in the upper quadrant on the rising side of the cylinder and the 
minimum thickness is diametrically opposite. 

1. Introduction 
We consider a special case of the flow of a liquid layer around the inside surface 

of a rotating horizontal drum or cylinder. Rimming flow, as we shall call it, and 
closely related rotating flows are encountered in cream separators, in liquid de- 
gassers (e.g. debubbling of solutions prior to coating), in some coating operations 
for pipes and tubes, in rotational moulding and spin casting of plastics, in the 
casting of molten metal or cement into pipes and columns, and even in the drying 
of fine powder in a rotating oven. 

Rimming flow is a non-trivial example of a steady, two-dimensional, viscous 
flow with a free surface. The flow domain is bounded, and so the upstream and 
downstream conditions which are imposed as asymptotic boundary conditions 
in other film-flow problems are absent. Moreover, the liquid film continuously 
wets the cylinder surface, and so there are no contact lines. For these reasons the 
geometry of rimming flow provides one of the simplest frameworks for studying 
a steady, viscous, free-surface flow and perhaps for analysing some of the in- 
stabilities arising in such flows. We also feel that rimming flow is an attractive 
first problem for the development of numerical methods for free-surface problems, 
because techniques for locating the free boundary can be studied uncomplicated 
by asymptotic boundary conditions and the expected singularities at contact 
lines, where the boundary data are discontinuous (e.g. Richardson 1967; Huh 
& Scriven 1971; Nickell, Tanner & Caswell 1974). 

In the following sections we study rimming flow as a perturbation about rigid- 
body rotation of the liquid layer at  the angular velocity of the drum. There are 
at least three limiting processes which lead to rigid-body motion: the acceleration 
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FIUURE 1. Rimming flow. 

by gravity tending to zero, the rotation rate of the cylinder tending to infinity, 
and the radius of the cylinder tending to infinity. We pivot a power-series ex- 
pansion of a presumed two-dimensional solution to the problem about this limit, 
and in 3 5 solve in closed form the linear elliptic problem generated at first order. 

In  0 6 we present three limiting forms of our result to make plain the structure 
of the flow and to provide simpler working formulae. These limiting cases also 
provide interesting illustrations of some of the principles of slow flow, high-Rey- 
nolds-number flow with a viscous boundary layer, and thin-Hm flow. When the 
Reynolds number is small, viscous and pressure forces are in balance with the 
gravitational force. This limiting case was developed by Rao & Throne (1972) 
in their model of a rotational moulding process under the further restriction that 
the film is thin. When the Reynolds number is large, a viscous boundary layer 
lies adjacent to the wall of the drum, as we show. Phillips (1960) obtained the 
inviscid component of this limiting flow as a step in his treatment of centrifugal 
waves. Lastly we treat the thin-film limiting case, which has not been previously 
considered to our knowledge. Observations by Karweit & Corrsin (1 975) reveal 
the complicated structure of rimming flow outside these special cases. 

2. Formulation 
We consider a horizontal, circular cylinder of inside radius R, which rotates at  

constant angular velocity SZ about its axis: see figure 1. We adopt polar co- 
ordinates with X the angular azimuthal co-ordinate, Y a radial co-ordinate 
measured from the inner wall of the cylinder, and e, and e, the corresponding 
unit tangent vectors. Position about the axis is R = - (R,- Y )  e,. The cylinder 
is partially filled with Newtonian liquid which is distributed in a layer around 
the wall. The layer thickness H ( X )  varies around the cylinder because of the 
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action of gravity; the local gravitational acceleration is G and the vertical direc- 
tion is j. Flow in the layer is two-dimensional and steady. The rest of the volume 
of the cylinder is occupied by relatively rarefied and inviscid gas which exerts 
negligible viscous traction at the gaslliquid interface and consequently is 
modelled by a uniform pressure Pa. 

The liquid velocity and pressure fields are V ( R )  and P ( R ) ,  respectively. The 
liquid properties are uniform: density p ,  viscosity p, kinematic viscosity u E ,u/p 
and surface tension c. The field equations are 

V.VV = -p-IVP +uV2V-Gj, 
v .v = 0.  (2.1) I 

The customary no-slip boundary condition at the cylinder wall is 

V = QRoe, at R = -Roe,. (2.2) 

The traction balance at the gaslliquid interface gives the boundary condition 

(P-P,)n-p[VV+(VV)T].n+cKn = 0 a t  R = - (Ro-H)e, ,  (2 .3 )  

where n is the unit normal to the interface, directed into the gas, and K is twice 
the mean curvature of the interface: 

The kinematic boundary condition requires that no liquid should cross the inter- 
face ; 

n . V  = 0 a t  R = - (Ro-H)e , .  (2.5) 

Finally, it  is evident that the solution of (2.1)-(2.5) must be periodic in the 
angular co-ordinate X with period 27r. 

A measure of the amount of liquid in the cylinder is the average iilm thickness 
D, which is given by 

1 2= 
2RoD-D2 = %Io (2R0H-H2)dX. 

There are four independent dimensionless groups; convenient choices are 

g E G/Q2Ro, 2 = QD2/u, s = c/pQ2RiD, dr --= DIR,. (2.7) 

The group g may be considered a dimensionless gravity or an inverse rotational 
Froude number, 8 a  Reynolds number, d, the liquid loading, and s a dimensionless 
surface tension or Weber number. 

Because the velocity field is solenoidal and because 

V.e,dS = 0 at Y = 0, (2.8) 

where X is the arc length, there exists a stream function $, determined up to a 
constant, 

a-2 
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3. Solution in the absence of gravity 
When G = 0, (2.1)-(2.5) admit a simple solution: 

(3.1) 
H = D. 

This is rigid-body rotation of a film of constant thickness. In  the absence of 
gravity there is no preferred direction, hence the radial symmetry. The pressure 
gradient balances the centripetal acceleration of the rotating liquid particles. 
This solution is of little interest in itself. However, a regular perturbation expan- 
sion in gravity can be pivoted about the rigid-body motion (3.1). To this end we 
presume that the limit of the full problem solution as G - t  0 is the above solution 
to the special problem when G = 0 and that this limit is approached uniformly. 

On physical grounds we expect that the solution with G = 0 is the limit of at 
least two other processes. An estimate of the centripetal acceleration of liquid 
particles is QZR,. When this estimate is large the radial pressure gradient is 
steep and tends to align constant-density surfaces with the level surfaces of the 
centripetal acceleration field; thus the liquid film is driven towards an equili- 
brium state of uniform thickness. The only cause of liquid deformation in a 
steady state is the gravitational field, and this can be countered by a strong 
enough centripetal field. Consequently we expect that in the limit as either the 
angular velocity i2 or the cylinder radius R, increases without bound the flow 
approaches solid-body rotation. Although both limiting processes do lead to the 
G = 0 solution, the mechanisms are quite different. What they have in common 
is that the influence of gravity is reduced as the relevant parameter increases 
without bound. 

V = Q(R,- Y )  e,, 
P-Pa = pQZ[R,(D- Y)-+(D2- Y2)]-a/(R0-D),  

4. Perturbation about rigid-body motion 
We introduce the dimensionless position vector 

r = R / R , =  -(l-d,.g)ev, g =  Y/D,  x = X .  (4.1) 
Dimensionless dependent variables which have non-zero limits as g -+ 0 are 

} (4.2) 
v(r) = V(R,r)/QR,, p(r) = [P(R,r) -P,]/pQ2DR,,, 
It(%) E H(x) /D ,  K ( Z )  = R,K(x).  

In terms of these the problem (2.1)-(2.6) becomes 

v .  Vv = - d,Vp +d$A?-Vv - gj, (4.3a) 
v . v  = 0, (4.3b) 

v = e s  at r = -ev,  (4.3c) 

( 4 . 3 4  
pn-d,9-f[Vv+(Vv)T].n+mn = 0, v . n  = 0 a t  r = r, = - ( l - d r h ) e v ,  

(4.3e) 
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plus the requirement of periodicity in the azimuthal co-ordinate x. We presume 
that the dependent variables have power-series expansions in g :  

The f i s t  coefficients are known from (3.1): 

vo= ( 1 - d r y ) e x ,  po  = ( 1 - y ) - ~ d r ( l - y 2 ) - s / ( l - d r ) ,  hO= 1. (4.5) 

Substituting (4.4) into (4.3) generates a sequence of linear problems which deter- 
mine the rest of the coefficients. In particular the field equations yield 

I vCn). VV' +v0. VvCn) = - d,.Vp(n) +d!W-1V2V(n) +I 
m- 1 I 

V . W  = 0, n 2 1. (4.7) 
Direct calculation gives V v o  = exe,-evex. By introducing the stream function 
@(x, y ) ,  equation (4.7) is satisfied: 

(subscripts x and y on 4 denote partial derivatives). Substituting vCn) into the 
curl of (4.6) yields 

where k = e, x ex. This is the linear inhomogeneous partial differential equation 
which must be solved at  each order. 

[VZ#")], = d!W-1V44(n) +dT1(V x I,). k, (4.9) 

The boundary conditions at the cylinder wall are, from (4.3), 

vCn)= 0 at r =  -ey ,  n 2  1. (4.10) 

The g dependence of the interfacial position complicates the introduction of 
expansions (4.4) into the free-surface boundary conditions. For example, the 
expansion of dimensionless surface velocity begins 

v(r8; 9 )  = vo(ro) +g[d,h(l) (e,.  V v o )  +vC1)(ro)] +O(g2), (4.11) 

where ro = - (1 -dr) e,. In  substituting such expansions into the traction 
boundary condition it is helpful to have the normal and tangential components 
of the latter; from (4.3) 

on r = r,, (4.12) 
p - d , W - h . [ V v  + ( V V ) ~ ] . ~ + ~ K  = 0 

n . [ V v + ( V v ) r ] . t  = 0 

where t is the unit tangent to the interface profile h(z). The interfacial boundary 
conditions on (4.6) and (4.7) with n = 1 now follow: at r = ro 

$l)- (1 -~?, . )h(~)-d,W-le , .  [Vv(l) + ( V ~ ( l ) ) ~ ] . e ,  +sd,(l -dr)-2[hgL +h(l)] = 0, 
(4.13) 

(4.14), (4.15) e,. [ W l )  +(Vv@))T].  e, = 0, $1). e, = d,.hz). 
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Condition (4.3 e) becomes the integral constraint 

/ozTh(l)(x) dx = 0. 

K. J. Ruschak and L. E. Scrivelz 

(4.16) 

5. Solution at first order 
When n = 1, I, = - j and so (4.9) is homogeneous: 

[v2plx = d ; 9 - 1 ~ 4 p .  (5.1) 

The only inhomogeneity in the fist-order problem appears in (4.6), which gives 
p(l). The inhomogeneity is I, = - cosze, +sinxe, and this along with the 
periodicity requirement suggests that the solution has the form 

$(l) = Re [eixf (y)]. ( 5 4  

Hereafter the real part is understood. From (5.2) 

v2$(1) = e i x p f ,  Pf dF2f,, - Cdr(1- d,.y)l-lf, - (1 -drY)-2f, (5.3) 

whence (5.1) reduces to a fourth-order equation in f: 

i9f = d;9?-19?f. 
This has the general solution 

(5.4) 

f = ki(1-4~) +kZ(l-dr~)-l +k,J l [d~)l  +k,Y,[a(~)l, (5.5) 

where the ki)s are constants to be chosen later to satisfy the boundary conditions, 
and a(y) = (&%)* (1 - i) (1 - d,. y)/d,. Here J1 and are Bessel functions of order 
one of the first and second kinds, respectively (Watson 1945, chap. 3). 

Before boundary conditions on f can be identified, expressions for h(l) and 
p(l) in terms off must be found. Equation (4.6) can be integrated to give p(l) 
once the complex representations of v(l) and I, have been substituted: 

An expression for h(l) is found by substituting the complex representation of 
v(l) in (4.15), integrating and applying the integral constraint (4.16): 

(5.7) h(1) = - f (1) eix/(  1 - d,.). 

f (0)  =f,(O) = 0,  

Thus boundary conditions (4.10) and (4.14) become, respectively, 

(5.% (5.9) 
fYy( 1) +dr( 1 - dr)-'.f,( 1) +d:( 1 - dr)-2 f (1) = 0. (5.10) 

The remaining condition at y = 1 is (4.13). From (5.7), hi2 +W) = 0, which 
removes the surface-tension term from (4.13). The circular free surface found at  



Rimmingjlow of liquid in a rotating cylinder I19 

g = 0 undergoes a small displacement with respect to the drum at first order but 
is not distorted. In  h a 1  form, the boundary condition from (4.13) is 

Of the four boundary conditions (5.8)-(5.11), only the last is inhomogeneous. 
The Reynolds-number term on the right side of (5.11) is directly descended from 
I, in (4.6), and thus the inhomogeneity originates from the presence of gravity. 

The four boundary conditions (5.8)-(5.11) are sufficient to determine the 
constants in the solution (5.5): 

(5.12) 

The new parameters are 

a, = %(a,) - a,Jo(ao), a3 = (2 - *a3 J,(a,) - a,Jo@,), 

a, E2 a(O), 01, = a(1). 
(5.13) 

This completes the solution for f, from which the stream function $(l) and hence 
dl), p(l) and h(l) all follow directly. This solution to the first-order problem is 
unique. In  the next section we examine limiting cases of these expressions in 
order to  illustrate the structure of the solution and to provide simpler working 
formulae. 

6. Limiting cases of rimming flow 
The foregoing solution to the first-order problem depends on the two groups 

99 and dr. When the Reynolds number 9 is small the Bessel functions in ( 5 4 ,  
(5.12) and (5.13) can be replaced by their asymptotic developments for arguments 
of small modulus (Watson 1945, chap. 3). The outcome of this tedious but 
straightforward task is 

d1)/'9 N ? = dL2{c, + 3 ~ ~ ( 1 - d , y ) ~ - c ~ ( l - d ~ y ) - ~  +c4[l +ln(I-d,.y)]}cosxe, 
- d ~ ~ { c ,  +c2(1 -dry)2 +c3(l -dry)-2 +c41n(l -d,y)}sinxe,, ( 6 . 1 ~ )  
p(l) N $j = dF1[(8c2 - 1) (1 - dry) - 2c,( I - d, y)-l] sin x, (6.1b) 

( 6 . 1 ~ )  h(l)/9? N h = d ; 3 [ ~ ,  + ~ ~ ( l - - d ~ E , ) ~  +c3( l -dr ) - ,  +c41n(1-dr)]cosx, 

where, with c E 1 -dT, 

(6.2) 
c1 -c2(1 -c4)/8(l +c4), c3 -c6/8(1 +c4) 
c2 = c2/8(1 +c4), c 4 -  = - - c  i 2 .  

These results give the departure from solid-body rotation when both g and 9 
are small. The nature of this departure depends on the relative amount of liquid 
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in the cylinder, as reflected by the group d,. The maximum film thickness occurs 
on the rising side of the drum, at  x = 0, a matter which is discussed further in 3 7. 

The limiting form of (4.6) satisfied by the limits 6 and j3 of the solution at  
first order shows that this is a slow-flow limit in which viscous and gravitational 
forces dominate and are balanced by the pressure field: 

0 = -drV@ +d:VzG-j. (6.3) 

This result suggests that the leading terms in the expansion of the problem solu- 
tion (4.2) in the Reynolds number are closely related to (6.1). Now it is physically 
reasonable to suppose that rimming flow approaches rigid-body rotation as 
W - f  0. Viscosity appears only in the denominator of W and with viscosity in- 
creasing without bound the liquid would ultimately be indistinguishable from 
solid. Thus we presume that the small-Reynolds-number expansions begin 

v N VO+WW +...,) 

1 p - n+..., 
h N 1 +WZ +... . 

It is easily verified from (4.3) that 

w = g6, n = po +g$, 1 = gi .  (6.5) 

On the other hand, when the Reynolds number W is large the Bessel functions 
in (5.5), (5.12) and (5.13) can be replaced by their asymptotic developments for 
arguments of large modulus (Watson 1945, chap. 7) .  Doing so we first calculate 
the limit of the first-order solution as W - t m  with y fixed (0 c y < 1): 

(6.6) i 
v(l)+vd = -*(l-d,.)z[l +(1-dry)-2]sinxez 

p(l) -+pi = - d;l{( 1 - dry) +$( 1 - 
h(l) -+hi = - $d;l[ (1 - d,)2- 11 sin x. 

- $(1 - d r ) z [ l  -( 1 -~?,y)-~] cosxey, 
[( 1 - dry) - 3( 1 - d,y)-l]} sin x, 

This is a flow contribution which is irrotational and which in azimuthal velocity 
alternately lags behind and runs ahead of solid-body rotation in successive 
quadrants. In  the vi field there are no net viscous forces: accelerations, or 
‘inertia forces’, and the force of gravity dominate and are just balanced by the 

(6.7) 
pressure field: 

The maximum film thickness occurs at  the top of the cylinder (x = *n), a matter 
discussed in 0 7. 

As expected of high-Reynolds-number flow near a solid boundary, the limit 
(6.6) of the first-order problem is not approached uniformly in the flow domain 
0 < y < 1. Indeed, the limit of v(l) is discontinuous with respect to y; for the 
limit of v(l) at the cylinder wall is zero and not what vd in (6.6) gives as y-f 0. 
To obtain a limit of the full solution ( 5 4 ,  (5.12) and (5.13) which retains the 
structure of the flow field near the cylinder wall it is necessary to introduce a 
boundary-layer co-ordinate : 

vi.vvo+v,.vvi = --d,Vp*-j. 

y” = (*W)bJ. (6.8) 
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Then as 9 -f co with y” fixed, y+ 0 at the rate (21379. The calculations which 
produce (6.6) make (6.8) the obvious choice for the boundary-layer variable; 
alternatively, classical boundary-layer problems suggest the choice (cf. Schlich- 
ting 1968, chap. 7) 

(6.9) 

(6.10) 

in the limit as 9 + co with y” fixed. Here u(l) and dl) are the x and y components 
of $I), respectively. The limits ti and ri; satisfy an equation of boundary-layer type: 

As usual $5 does not vary across the boundary layer, and the pressure along 
the boundary layer can be regarded as imposed by the inviscid flow (6.6). When 
viewed from the cylinder wall, which is turning with tangential velocity QR,, 
fluid particles far enough away to be outside the boundary layer appear to oscil- 
late in phase because of the sinusoidal variation in the streamwise component 
of gravity. Particles inside the boundary layer also appear to oscillate, but 
owing to viscous damping the fluid layers do not oscillate in phase and the 
amplitude of the oscillation tends to zero at  the wall. In  Stokes’ second problem 
(Schlichting 1968, p. 85) a wall executing translatory oscillations gives rise to a 
comparable boundary layer. 

In the last of the limiting cases to be examined here, d,+O and the mean 
am thickness is much smaller than the film circumference. In  this limit the 
liquid layer behaves like a thin film: azimuthal derivatives of velocity and pres- 
sure become much smaller than radial derivatives. With = ($a)& it follows 
from the results of the previous section that as d, -+ 0 

1 u(1) +iZ = - (1 -d,)2[sinx +e-Qsin(Q-x)], 
(+a)* d1) -+ v” = d,( 1 - d,)2 {y” cos x - +(sin x +cos x )  

- + e-g [sin (ij - x )  - cos (y” - x)]}, 
p(1) +ri; = -(Z-d,)sinx 

12% = - d, PZ ++iZgg - cos X .  

dl)- u* = -sinx+(iisinx+Ecosx)sinpycoshby 

- (a cos x - E sin x) cospy sinh By +e-bv sin (x - By), (6.11 a) 

dl)/dr - w* = ycosx+[(~+C-1)sinx-(~-E+1)cosx]/2/3 

- (ii sin x + E  cos x) (COB By cosh By +sin By sinh ,dy)/2B 

+ (a cos x - Z sin x) (cos /3y cosh By - sin by sinh/3y)/2/3 

+ e - ~ ~ [ s i n  (x -By)  +cos (x-,4y)]/2/3, (6.11b) 

p(1) N p* = (3y- 2) sinx - [(a- C + 1) sin x +(a +C - 1) cos x]/2/3 

+(Zsinx +C cosx) (cos/3ycoshpy-~in~ysinhpy)/~ 

+(Zicosx-Csinx) (cos~ycosh/3y +sin/3ysinhBy)//3 

+6pv [sin (x --By) - cos (x -py)]//3, (6.11 c) 

(6.1ld) h(l) - h* = s inx - [ (~ -C+1)s inx+(~+~-1 )cosx ] /2~ .  
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The coefficients ii and C depend only on W: 
K .  J .  Ruschak and L. E. Scriven 

sinpcosp(sinhp +coshp) 
cos2pcosh2/3 +sin2psinh2/3’ 

a e-8 

- c = e-8 cos2 ,8 cosh ,8 - sin2 j3 sinh /3 
cos2p cosh2P +sin2p sinh2/3‘ 

(6.12a) 

(6.12 b )  

The equations which the limits u*, v*, p* and h* satisfy clearly indicate the 
dominance of radial (cross-film) derivatives; for example the limiting form of the 
azimuthal component of (4.6) is 

uf = 9-%& - cos x. (6.13) 

This thin-film flow also has large-Reynolds-number and small-Reynolds- 
number limits. As 9 + c o  a viscous boundary layer arises within the thin film 
near the cylinder wall, just as in the high-Reynolds-number limit of the general 
case. As W -+ 0, on the other hand, 

(6.14) 1 u* N - 9 ( y  - 4y2) cos x, 
v* N - W ( t y 2  - +y3) sin x, 

-p* N (1-y)sinx+9($-y2+Qy3)cosx, 
h* N &2 cos X. 

Thus when g, d, and 9 are small enough, the flow at any point x on the cylinder 
is locally indistinguishable from fully developed fYm flow on an inclined flat 
plate which is tangential to the cylinder at x and which translates with the 
velocity of the cylinder at  x. 

7. Film thickness : concluding remarks 
In  steady-state rimming flow the flux of liquid across every ray X = constant 

must be the same. Hence where the average azimuthal velocity is greatest the 
film must be thinnest, and where it is least the film must be thickest. At low 
Reynolds number, fluid acceleration is insignificant and the velocity is least 
where gravity’s component opposing viscous drag by the wall is greatest. That 
occurs at  X = 0, i.e. where the ascending cylinder wall has a vertical tangent. 
Thus, at low Reynolds number, the film is thickest at X = 0. For the same sort of 
reason it is thinnest at X = n, and it takes on its mean thickness at X = in- 
and X = Sn-. All of this is borne out by formulae (6.1) and (6.14). 

At high Reynolds numbers the flow is virtually inviscid outside the thin 
boundary layer at the cylinder wall. Except in the limit, however, the effect 
of viscosity is not totally absent, for it is responsible for maintaining the ‘inviscid 
zone’ at  an average angular velocity Q. Nevertheless, outside the boundary 
layer in a steady state, viscosity does not impede the acceleration of fluid 
particles. The principal pressure gradient is generated by the centripetal field 
and tends to move fluid particles along circular orbits. Gravity is left free to 
accelerate and decelerate fluid particles along their orbits, which actually are 
nearly circular. So gravity decelerates fluid particles along their orbits as they 
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1 s o  

0 2 4 6 8 10 12 

(&%* 
FIC~FLE 2. Angle (in radians) of maximum film thickness in the limit d, -+ 0 

when g is small: equation (7.1). The broken curve is (7.2). 

travel upwards with the cylinder, and accelerates them as they travel downwards. 
Thus liquid particles reach minimum azimuthal speed at  the top position and so 
the film is thickest there, i.e. at X = in-. Similarly, it is thinnest at the bottom 
position X = % 7 ~ ,  and it takes on its mean thickness at  X = 0 and X = 7c. This 
is confirmed by formulae (6.6). 

At intermediate Reynolds numbers the location of maximum film thickness 
is always somewhere in the upper ascending quadrant, 0 < X < &n-. The location 
can be estimated for low liquid loadings by working with the limit of H as 
d,.+ 0. Differentiating h* from (6.11) with respect to  x and setting the result to 
zero, we have - a - C + 1 - 2/3 

tan X ,  = , d,.+0. Z + Z - l  

The maxima from (7.1) are plotted in figure 2. From (7.1) it can be shown that 

tanx,  N (2W)*- 1, dr+O, 9-+00. (7 .2 )  

However, the location of the maximum more generally depends on the liquid 
loading, as measured by d, = D/R, (recall that D is mean layer thickness), as 
well as on the Reynolds number 3. The complete equation to be solved for X,, 
the angle of maximum layer thickness, follows from (5.7): 

tan X ,  = - Im {f( 1)}/Re { f (  I)}. (7.3) 

It is no easy matter to compute X ,  when W is near zero, when 99 is large or when 
d, is small, because small differences between large numbers are required in 
these cases. However, we have established analytically that (7.1) is indeed the 
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FIUURE 3. Curves indicating constant angle (in radians) of maximum film thickness as a 

function of liquid loading d, and Reynolds number W when g is small: equation (7.3). 

limit of (7.3) as d,-t 0 with W fixed. Moreover the asymptotic behaviour of (7.3) 
proves to be 

and the limit of this result as d,+O with W fixed is (7.2). Figure 3 is based on 
these facts together with numerical computations, and illustrates the important 
point that the angle of maximum film thickness is relatively insensitive to liquid 
loading at modest loadings. Therefore, for a wide range of conditions figure 2 
serves to predict X, accurately as a function of Reynolds number alone. An 
interesting feature of figure 3 is that some pairs {Xm, (@?)*I occur at two separate 
values of d,. 

It was remarked in $ 3  that, although both of the limiting processes SZ --f co and 
R,+m lead to solid-body rotation, the mechanisms are quite different. These 
mechanisms are now evident. As the cylinder radius R,-too when all other 
parameters are fixed, both g-t 0 and d,+ 0, and consequently solid-body rota- 
tion is approached through the thin-film limiting case. On the other hand, as 
the angular velocity Q-tco, all else being fixed, g + O  and W-too, and as a 
result solid-body rotation is approached through the limiting case of a viscous 
boundary layer. 

tanX, N ( ~ W ) * d ~ l [ ( I - d , ) - z - ~ ] - l ,  W+m, (7.4) 
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